
School of Computing

Teesside University

Middlesbrough TS1 3BA

Date: 19th February 2020

Lewis Simon Preen

Supervisor: Ian Sturrock

Second Supervisor: Chris Bailey

The Moral Link

A third person adventure puzzle game. Achieving

ethical and moral game play though a mental and

visual experience.

Reflective Report with Portfolio

Submitted as a required component for the degree

of MA Games Development.

1

2

Disclaimer
The following is a (non-profit) fan-based MA Degree project.

The Legend of Zelda franchise, characters and music are all licenced property of
Nintendo Co., Ltd., Shigeru Miyamoto and Takashi Tezuka.

Any resemblance to real persons or other real-life entities is purely coincidental.
All characters and other entities appearing in this work are fictitious. Any
resemblance to real persons, dead or alive, or other real-life entities, past or
present, is purely coincidental.

Contents
Project Management
Story
Animation, Art, Sound and Visual Effects
Development
Third Party Evaluation
Development Diary
Pre-Production
Player Character
Player Movement
Player Combat
Player Health & Stamina
Player HUD
Player Mini-Map
Moral System
Factions
Quest System
Journal

5
5
6
7
7
8
8
9

9 - 17
18 - 19

20 - 26
27-29

30
31 – 32

33
34

34 – 39

3

Contents
NPC’s
NPC Interaction
NPC Movement
Enemy AI
Enemy Patrol
Enemy on Sight Chase Player
Enemy Distance Check
Enemy Launch Attack
Enemy Attack Notify
Enemy Death and Respawner
In-Game Mechanics
Save
Load/Start Menu
Reflection
Learning Outcome
References for Used Assets

40
40
41

42 – 44
45
46
47
48
49
50
51

52 – 53
54 – 55

56
57
58

4

Project Management
I originally started using Trello to plan out my project as it was easily accessible, meaning I could

see what I had to do and what I had accomplished. I decided to use Trello as it was free to use
over other planning software such as Microsoft Project. I have also had experience using Trello

when working on other projects. During the middle of the project I didn’t need to boot up the
internet everyday whilst working so I started using white boards hung above my monitors at

home that I used to make notes and keep scheduling times on.

5

Story
The game is set in the land of Hyrule, Link has been away for a couple of years, during which
time an evil entity has awoken and fractured the Triforce into several pieces. This caused the

three founding Hylian Goddesses Din, Nayru and Farore to split and create a new Deity for each
fractured piece, in which many of the various civilizations began worshipping these new Deities

in their own way causing hatred towards one another. When Link arrives home, he finds a
hostile new Hyrule in which he is forced to accomplish tasks in order to leave or enter specific
villages and towns. Playing on his own moral compass, Link must collect the fractured pieces of
the Triforce whilst keeping all the civilizations in good standing before bringing peace back to

Hyrule.

6

Art, Animation, Sound & Visual Effects
As I am predominantly a designer for the game’s animation and art, I have chosen to take

advantage of a lot of the free assets available from the Epic Games UE4 Marketplace. I also have
access to models and sprites via the free source websites www.models-resource.com and

www.spriters-resource.com. I will also source assets and models from previous single and group
projects if I feel they fit in with the art scheme of the project.

For the sound I will try and stick to Zelda sounds using www.zeldauniverse.net which is a non-
profit Zelda website and as this game is non-profit project, I am not in breach of any copywrite

laws, if I cite the original artist/author.

7

Development
For this project I decided to use Unreal Engine over other video game engines as I have more

experience using this software. I started the project using version 4.19 but during the project I
updated to 4.21 as some of the mechanics I had started to develop were outdated in 4.19 and

there were faster and easier construction methods in the later versions of the engine. This also
allowed me to use more assets from the Unreal store as they only worked with specific engines.

Third Party Evaluation

As this project was for a MA degree, I needed to have my project tested by third party play
testers. I used two stages when developing my game, the first was internally creating and

playing the game for its technical features ensuring everything was to scale. Play testing the
games movement mechanics and ensuring that the quest settings worked and synchronized with

the character journal system so I could hand it over for beta testing.
Beta testing was stage two which was done by third party play testers, who were play testing
for game bugs and feedback. After receiving feedback, from the results from the Beta test, I
begun implementing improvements to the project. I added combat system, an enemy Behaviour

tree and new quests that only give you positive moral such as: delivery and hunting quests,
where the player must take an object to a player and hunt a bunch of monsters respectively.

The Journal function was updated to add a pause function and transparency so the player could
be saved from enemy attack and could see anything around them.

8

Development Diary
Pre-Production

During the first three weeks of the project I spent researching various games that utilised some
form of moral choice and began reading publications that helped with project production in this

area. There was a lot of useful information online, however I found a lot of the papers I was
reading to be a false analogy of moral choices with ethical gameplay and realistically they were

just papers on choices in video games that had slight moral choices.
I then spent a couple of weeks learning Unreal Engine scripting using Custom Functions,

Enumerations, Macros and Structures, in order to improve my Unreal skillset. I had previously
used Custom functions and Enumerations in the past but only the dogmatic basics and simple

functions. Most of my pre-production and basic mechanics were completed by July 2019,
however I suffered a mental health set back and ending up being signed off for 15 weeks. When I

got back to work around mid-November, I wasn’t happy with my previous character controls,
basic quest system and the inventory system I created, as I felt it wasn’t up to a MA Degree

standard. So, I began creating a whole new project from scratch based on my original research
with a fresh outlook on the project.

9

Player Character
Because I was basing my game on The Legend of Zelda franchise I begun researching and playing

the latest instalment, The Breath of the Wild. I wanted to incorporate the player Hud and
movement that this game has. This meant that I would needs to create a movement function,

that makes the player run, sprint and walk. I also wanted to add other mechanics such as
climbing, gliding and swimming. However, due to time restraints I was only able to incorporate

the gliding mechanic form the latter three. I also wanted to create a health bar that worked like
Zelda’s heart system rather than a progression bar, similarly I wanted to also create a stamina
wheel so when the player was exhausted there would be visual feedback for the player and also

set the character to their minimum walk speed.
The final player character function I wanted to add from The Breath of the Wild was a Mini-Map

that would help the player navigate around the games map, highlighting NPC’s and objectives. I
really wanted to try and add the sound motion detector and day and night cycle detector to the

game, but time restraints meant I couldn’t.

Player Movement
As mentioned earlier I wanted Link to have four movements Gliding, Run, Sprint and Walk, to

achieve this I created custom functions and macros that all linked together and changed via an
Enumeration. I used various Booleans with true and false statements to check if the player could

do a specific movement.

10

Finalized Movement Mechanics.

Above are the custom functions that make
allow the movement mode to transition

between movement modes and the various
functions.

Movement Modes that travel through
an enumeration.

11

Sprint Mechanic.

The sprint mechanic checks that the sprint key
is pushed and also if the player is gliding then

activates the function. When the player is
exhausted the Stamina regeneration function is

launched.

Sprint Function

The sprint function
checks the player is on
the ground and sets the
movement to sprinting.

12

Gliding Mechanic.

Above is the gliding mechanic that is activated during the
jump function, it checks that the player isn’t exhausted and

also isn’t in combat mode.

13

Gliding Functions.

Above is the gliding function that checks the player is a certain distance from the
ground so they can deploy the glider and if they are the gliding movement is

activated.

Below is the function to stop gliding which is just a simple boolean check and a
enumeration change.

14

Stamina Functions.

The top function
shows how the

stamina depletes
as the player is
sprinting and

gliding.

The bottom
function shows
how when the

player is
exhausted the

stamina begins to
regenerate.

15

Enumeration Functions.

These are the various
enumeration functions
that are called upon

when a specific
movement mode is

selected.

The Stamina wheel
variable is explained
later in the report.

16

17

Macro Functions

The macros on the previous page and the one above are all
utilized to set the various walk speeds, gravity scale and

player air control.
The glide macro also shows how when the glider is activated
it slightly launches the player in the air like a gust of wind,

this was added for player feedback.

18Player Combat
I implemented combat mechanics after play testers said that the game would benefit from

combat, especially it being a Zelda game.
Below is the function that switches the game mode to combat it checks that the player isn’t

gliding this was so the player couldn’t transition to a new animation whilst gliding.
During the change to combat mode the player transitions between two animation blend spaces

and blue prints. Also before each switch the animation also has a montage that has Link sheathing
and unsheathing his weaponry. One thing missing from this blue print is I set the character

movement to zero when they are sheathing and unsheathing.

19

Attacking and Blocking Functions.

The above function is for when the player
attacks, it first checks if the players weapons
are drawn and they are not blocking it also

freezes the player on the spot so they do not
skid around whilst the attack animation is

playing.

The blocking function does the exact same as
the attacking checks that the player is not

attacking and also freezes movement speed and
unfreezes whilst blocking and not blocking.

20Player Health & Stamina
I wanted the health system to replicate that which is used in the Zelda series starting with three

hearts and having the ability for the heart to decrease by quarters rather than the standard
progression bar the UE4 uses.

Heart Material.

Above you can see how the heart function works when it decreases by a certain percentage. Each
heart has a value of 4 and so if you decrease 1 or 25% the player loses a quarter of heart as

can be seen in the image to the right.

21Percentage Modifier

Below shows how the initial percentage modifier works to make sure only a quarter of heart is
taken or added each time the player takes damage or receives healing respectively. Also checks

if a heart box is full or empty so it can perform this task.

Add Heart function.

The above function shows how the player can gain more then three hearts however it first
checks if the player has already got twenty hearts, which is the standard maximum in most

Zelda games.

22

Find Hearts to Add Macro.

The blueprint to the right shows how
the game finds hearts to add back to the

character after receiving them.

Find Hearts to Subtract Macro.

The blueprint above shows how the
game finds hearts to subtract and what

percentage when combined with the
percentage modifier.

23

HUD Event Construct and Update Hearts function.

The above functions show that at the start of the game the player starts with three hearts as
the index is set at two.

The update hearts function shows how the macros on the pervious slide work with the
percentage modifier.

24

Modify Health.

In the character blueprint is where the modify health function is set. The above
image shows how the function works with the HUDS update hearts function.

Event any Damage.

The functions to the left shows that
any damage receiving will modify

the health from the above function,
in the Enemy Blueprint you will see

how blocking prevents damage.

25

I wanted the stamina system to replicate Breath of the Wilds having a circular bar that depletes
green and regenerates the same colour if not fully used. But when the player reached zero

stamina the bar will turn red and the player will be exhausted until the regeneration event has
finished its full cycle.

Samina Material.

Above you can see how the stamina wheel works when it decreases by a certain decimal. Also as
seen in the furthest white box that shows flow you can see that when the wheel decreases
makes a perfect circle. The image to the right shows what the player will see on the screen

during the use of the stamina function.

26

Samina Function.

Above you can see how the stamina wheel works on the HUD. For this to work I had to use an
event tick, which I usually hate using as it can be performance heavy in the engine but because I
couldn’t find a work around and it wasn’t that performance heavy I didn’t mind using an event

tick.
As you can see it shows how when Link is exhausted is changes from red to green.

27

Player HUD
I wanted everything to run via the main player HUD so all the widgets all feed to one location
and call upon one another. The image on the next page shows what the players HUD looks like

with everything running at once except the Quest Journal.
Like all Zelda games the health bar is situated in the top left hand corner of the screen, the

stamina wheel is just off from the player character just like the Breath of the Wild as well as
the players Mini-Map which is located in the bottom left hand corner.

The left and right side also have two new functions which are the Moral System and Quest List
entry respectively. These do not stay on the screen permanently like the hearts and the mini-
map. They work via a console command that can slide in the widgets using the M and Q keys.

When the player picks up a new quest the widget will automatically slide in and the player has
the choice to slide it out if they desire. Same with the Moral System if you enter a new region

the morals of that region change so to update the player is slides in.
The stamina bar only appears when the player is either gliding and sprinting that shows it

decreasing and regenerating as soon as its back at 100% it disappears.

28

29

30

Player Mini-Map
The player Mini-Map using a render target from a camera attached to the top of the character
that only shows specific items. Such as NPC’s as dots, the player counter as a central direction
arrow. If an NPC has a quest a ? will appear on the radar, that will or will not move if the NPC
is patrolling. If the layer has to find a specific location the yellow arrow will move around the
mini-map like a compass, it also shows the player how may steps they have to take to reach a

destination. This will also show a coloured circled location on the mini-map to inform the player
they are close to the location of whatever they are hunting,

Update Direction Arrow function.

The blueprint to the left is from
inside the Quest Manager system

and shows how the mini-map
arrow updates depending on the

character and current goal
locations.

31

Moral System
The moral system is the integral part of this prototype and was on of the first things I began

development on. It is essentially just a progress bar that most games use for health, stamina or
even magic in RPG’s. Because of how simple is was to create an experience system I wanted to

focus more on the story arch and narrative of the game creating Quests that will morally test
the player. It is also another reason why I wanted to create additional movement controls for

the character and also a quest system. As I felt that the Moral system alone would not be a true
reflection of my skills in the Unreal Engine.

Moral Experience Bar.

The widget to the right is what the
player sees when the moral counter

slides in. I have five factions in the game
and the bottom two progress bars

change colours and the factions symbol
also changes. The reason the bottom

two have merged symbols is because in
the editor the bars do no act as hidden

until the game is activated.

32

Moral Experience
Adding and Updating.

The blueprints here show how
the moral system updates

widget and also gains additional
moral points (which are

clamped at 100 in the rewards
functions of the Quests)

33Factions
For the purposes of the prototype I created five factions that the player can interact with. Each

faction has their own beliefs and morals which dictates how they present themselves to Link.
Each faction has their own symbol so when the player is given a quest or challenge they can

easily track which faction they are currently working for.

Bad Boys Club

Bunch of young adults who
like to cause trouble for the
citizens of Kakariko Village,

they were originally children
of the Lost Woods before the
Forrest Girls faction lead by

Saria kicked them out.

Old Man

The original Mayor of
Kakariko Village who just

wants to retire in his garden
but gets a lot of trouble from

the Bad Bous Club.

Mayor Kakariko

Mayor of the Village who was forced to
distance himself from the Lost Woods

residence after the Triforce fractured and
corrupted the Forrest dwellers.

Forrest Girls and Saria

The Forrest dwellers of the lost woods
became bitter and twisted towards the
Hylian folk with the destruction of the
Triforce and mutated them into plant

people. Their leader Saria has become a
matriarch and finds all outsiders

untrustworthy. She has memories of Link
but he must prove himself to her people

before she will entertain him.

34

Quest System
To fill out my project I started work on a complex Quest system that worked between multiple

widgets and other assets such as NPC AI and Interactable Objects. Within this quest system was a
Journal that the player could track various quests that they have participated in, currently

ongoing or failed.

Journal
The player Journal was easily accessible for the player to track quests. Originally I just had a
quest list that appeared at the side of the screen as mentioned earlier when the Q key was

pressed. The journal was added to give the game narrative and help tell the story, inside the
journal I could fill out a detailed description of events that the NPC’s could of said without having
to worry about creating elaborate dialog conversations and cutscenes. This would all be done via

the Quest blueprints

Updating Journal Description.

This blueprint shows a simple
piece of coding that changes the

Quest Description.

35

36

Generate SubGoals
& Adding Quest list.

The top blueprint is
how the many

various SubGoals
appear under the
Journals Goal box
for example if the
player had to do

more then one task
such as find a flower
and hunt 2 spiders.

The bottom blueprint
demonstrates how a
simplified version of
the quest appears
under its specific

category (Current,
Completed and

Failed).

37

38

Updating the Journal.

This long blueprint is what goes into updating every aspect of the
Journal from the quest type, the moral givers, region allocation,

quest details and rewards.

39

Category Access.

Pressing the Quest Category will rotate the
Hylian symbol 90 degrees and then reveal
the below Quest entry. Upon clicking the
Quest entry the journal updates to the

corresponding Quest information.

40

NPC
As I was going to be using various NPC’s that had similar characteristics, I created a Master

blueprint in which I could create children that had the same core instructions but had editable
instructions and own features.

NPC Interaction
The interaction with the AI is quite simple, using a blueprint

interface I created a interaction tool that worked along side
the player characters collision box, so when they enter the AI
space and leave it would trigger and event that allowed the
player to interact with either an NPC or an object such as a

collectable or a sign post that had writing on it.

41

NPC Movement
The movement of the NPC was quite easy to achieve as I had worked with patrolling points
before and was a simple blueprint that just worked with a billboard function that allowed

me to place random points in the map and then assign the patrolling NPC with a set
destination and in what order they walked to specific points.

NPC Individuality.

To the left is the editable NPC
characteristics. I can name each NPC, give
them an ID if there are multiple AI in one

quest. Change their default message and how
long it is show for. Set their Quest, set the
prerequisite to the quest and also a message
for after the quest is done. And finally set
patrol points which is only allocated if the

Does Patrol function is set to True.

42

Enemy AI
As with my NPC, I made the AI as a master blueprint so if I wanted to create different enemies

with various individual characteristics I could, such as; health, damage, speed and look/animation.

Enemy Launch.

Above is the begin play/launch for the enemy that sets the health of
the enemy and checks the various key selectors of the behaviour tree.

43

Enemy UI.

Above is set up for the Enemy’s UI which shows there health as a bar and the enemy name.

Enemy Health.

Basic health set up for
the Enemy.

44

AI Behaviour Tree.

To the left is the Enemy AI
Behaviour Tree that shows the

various sequences and checks that
the Enemy blueprinting goes

through in order to patrol, chase
the player when noticed, attack

the player and also when to
retreat when the player has
gained distance on the Enemy.

45

Enemy Patrol
For the enemy I didn’t want them to move linear like the NPC’s did and I wanted them to have

freedom of movement so this is where a behaviour tree comes in handy. Below are functions in
the Enemy blueprint and behaviour tree task blueprints.

46

Enemy Sight Check Player
The Enemy AI uses a pawn sensing ability that links to the behaviour tree and once it has noticed
the player character its movement speed increases to a sprint and begins to chase the player.

47

Enemy Distance Check
The below blueprint checks if the player character firstly is in range to be chased and then if

they are in range of an attack.

48

Enemy Launch Attack
Most of the Enemy instructions for the attack phase lie within the Enemy master blueprint. The

main execute though is attached to the behaviour tree through a blueprint task.

Launch Attack.

Below is the blueprint script that calls upon the
launch attack checking the actor location is in

range and then selects a montage for the
animation to change to an attacking animation.

49

Enemy Attack Notify
The attack notify actions checks the attack distance of the player and enemy then if they are

inline the enemy attacks the player modifying the players health the Attack damage is a
individual to each Enemy class. One final check is that if the player is blocking they will take no

damage.

50

Enemy Death and Respawner
Respawner

This blueprint here is the
process that the enemy goes

through after its death before
the respawn. The respawner is
a separate blueprint that an be
places anywhere in the game

world.

Keeping in the style of
Breath of the Wild I
wanted to have the

enemies respawn all at
once during a specific time.

51

In-Game Mechanics
I also wanted to learn how to create a proper save and load system. I worked on creating a
system that features the game starting with the player being able to new game or load a
previous save state as soon as the game launches. Then when the player selects the save

function they can choose to save to a slot and continue their current game.

Event being play and show save widget.

The above blueprint launches the save/load widget that has he new game and load game
functions. The below blueprint launches the save function when the save button is pressed.

52Save
Save Slot.

This image to the left is a generic saved file. The update
function when saving the game saves the Region and also

the time the game was saved. The dark image was supposed
to be an in-game screenshot but I couldn’t figure out how to

get it to work.

Generate Save Slots.

When the save file
launches up this
blueprint runs to

generate the amount of
slots available for the

player, which is editable
in the player blueprint.

53

Saving the Game.

This blueprint is the whole save function that
locates the slot and then calls between the player
variables and the save variables and makes sure

everything is saved to its current statistics.

54Load & New Game Menu

Main Menu Screen.

The load and new game
slot use the same wiget
the only difference is

the orange button
changes from saying

“New Game” to
“Continue” when it is

updated and you select
save game whilst playing

the game. The centre
panel is where all the
save slots appear once

they have been
activated.

55

Loading a Save Slot.

Similar to the save slot the load function
works with the player settings and sets all the
current statistics to the previously saved files.

56

Reflective
I wasn’t completely satisfied with this project which can be seen in the final hand-in as during the
last build there was a bug that cause the game not to open. Upon restoring to an original version
of the project I had located the bug written into the NPC and Quest system that wouldn’t allow

the Question mark above the NPC to show when they had a task available. After fixing this
however the moral system decided to break and it meant the game would only add moral to the
percentage bar and not negate anything, this causes quite a bit of stress so in the end I had to

scrap a lot of the project and handed in pretty much bare bones and it now looks and feels like a
Games Design basic package that anyone could pick up and make their own.

Everything else in the project works fine such as character movement mechanics, enemy AI
behaviour tree and the quest system, but sadly the main part of the game being the moral

system was corrupt and I didn’t have enough time to fix this. Which is quite upsetting because
before the build the game worked fine and I was able to get some positive feedback on the game,

hindsight is a wonderful thing and if I knew this was going to happen I would of recorded the
game testing and have used that to aid my physical hand in.

I also believe that I came back to the project too soon as during the first few weeks I had some
mental health issues that put my project on hold for the duration of the course which meant I

initially was going to fail the project. Fortunately for me the University and my lectures
understood the situation and aided me as much as they could, but personally speaking as I

mentioned above I think I may have come back to soon. This was mainly a finical decision as I
couldn’t fund myself for another year and decided to power on through the project no matter

the outcome

57

Learning Outcome
This project was a giant learning curve for me as I got to experiment more within the Unreal

Engine then I have in previous projects. I learnt how to implement parent classes more
efficiently meaning that I could be more creative with my child class actors and they were easily

editable within the Unreal level editor. I also improved my character development skills
researching and learning how to create functions that work along side macros making my

blueprints a lot stronger.
In previous projects I have used behaviour trees for AI using simple sight and attack commands
but in this project I learnt more technical skills when it came to working with behaviour trees

such as enemy patrolling, distance checking and creating a respawn system on death.

58

Reference for Used Assets

Advanced Village Pack – Unreal Engine Market place

Forest Girl Model and Animations - www.Mixamo.com

Hylian Shield - www.themodelers-resource.com

Link Character from Breath of the Wild - www.themodelers-resource.com

Master Sword - www.themodelers-resource.com

Spider Model – Unreal Engine Market Place (Infinity Blade Adversaries Pack)

	Untitled

